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External fluctuations in a pattern-forming instability
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The effect of external fluctuations on the formation of spatial patterns is analyzed by means of a stochastic
Swift-Hohenberg model with multiplicative space-correlated noise. Numerical simulations in two dimensions
show a shift of the bifurcation point controlled by the intensity of the multiplicative noise. This shift takes
place in the ordering directiofi.e., produces patterpsbut its magnitude decreases with that of the noise
correlation length. Analytical arguments are presented to explain these[Bt863-651X96)07706-9

PACS numbgs): 05.40+j, 02.50.Ey, 47.20-k

I. INTRODUCTION (n) 7(X )y = 26 8(X—X") S(t—t'). 1.2
A large amount of experimental spatially extended sys-
tems exhibiting nonequilibrium transitions controlled by the This white noise accounts for hydrodynamic thermal fluctua-
environment existfor a review, sed1]). These transitions tions in the convective instability, or for spontaneous emis-
usually occur in such a way that the system departs from agion in the optical case. l{glimensionlessstrengthe is very
initial homogeneous state when an external control paramsmall, so it has no qualitative effect on the pitchfork bifur-
eter surpasses a certain threshold value. Frequently, this iation exhibited by this model.
stability leads to the appearance of nonequilibrium spa- External fluctuations, on the other hand, are known to
tiotemporal dissipative structures, which subsist as long akave nontrivial qualitative effects on the behavior of nonlin-
the external driving stress that has produced the transitiosar dynamical systems. In particular, zero-dimensional sys-
persists[2]. This is the case, for instance, in the hydrody-tems (i.e., systems with no spatial dependenbave been
namic convective structures controlled by the temperatur&nown for more than a decade to exhibit transitiomduced
difference between the plates of a RayleighBe cell by external noisésee[12] for an extensive review In the
[3,4], or in the appearance of transverse structures in a lasésist few years, interest in studying the influence of external
beam controlled by the pumping rdte,6]. Usually, most of  fluctuations on spatially extended systems has grpi@
the features present in these pattern-forming processes at&|. This influence is likely to be more relevant in these
satisfactorily captured by a model equation, which was introsystems than in the previous homogeneous ones, due to the
duced by Swift and Hohenbef@] with the initial objective  existence of symmetry-breaking effects in the transitions oc-
of describing the effect of fluctuations at the onset of con-curring in them.
vection in the Rayleigh-Beard cell mentioned above. Since  In the particular case of the SH model, Elder; 3 and
then, the Swift-HohenberfSH) equation(and proper modi-  Grant[14] observed a disordering effect of the additive noise
fications of it[8,9]) has proved its great usefulness in thispresent in Eq(1.1), when it is no longer considered to be
field, not only in a hydrodynamical contexf0,11. The internal, so that its intensity can be arbitrarily large. Hence,
equation reads the stripe structuréroll structure, in the hydrodynamical ter-
minology) suffered a transition from a smecfiarge regions
of parallel stripesto an isotropic(disordered system with
short-range ordgéregime as the intensity of the additive ex-
ternal noise increased.
Herer is the bifurcation parametéthe temperature gradient ~ Yet another possibléeven more reasonableource of
in the Rayleigh-Beard case, or the pumping rate in the laserexternal noise exists, namely, the control parameter of the
case, which controls the appearance of a pattern of charachifurcation. The fact that this parameter is directly related to
teristic length of ordek, *. The field7 is a random function an external constraint imposed by the observer makes it
of space and time, representing internal noise of the systenlikely to be affected by fluctuations. Let us now denote by
Usually this term is statistically described by a Gaussiar the mean value of this fluctuating control parameter. Now

Au(X,t)
ot

=ru—[V2+k3Pu—ud+ p(x,t). (1.2

probability distribution with zero mean and correlation the SH equation reads
“On leave from: Dept. de ‘Bica i Enginyeria Nuclear, E.T.S. au(x,t) - 2, 242 3 -
. =[r+ u—[Vo+kglou—u+ n(x,t).
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Hence the random field is a zero-mean external multi- with
plicative noise(chosen Gaussiarwhose correlation should
not in principle be assumed to be white. We shall choose

&
here a noise colored in space and white in time: (O (1)) = 2557 6 8t =t') 22

- -

' (&(DE(L))= 2D;_j8(t—t"). 2.3
Cells are named with one index and repeated indexes are

summed up. The deterministic for€eand the coupling func-
\ is the correlation length of the noise. This model was studtion g are in our particular case

ied in Ref.[15] in the limit caseh — 0 (noise white also in

(g(i,t)g()?,t’))=2D(¥>5(t—t’). (1.4

spacé and nontrivial effects were indeed found on the origi- fi(u)y=ru;— (V*u);—2(V?u);—u;— uf‘, (2.9
nal bifurcation, which was shifted into the pattern region as
the intensity of the external noise increased. Hence the role gij(u)=u;d;; . (2.9

of this external noise is, at least for some values of its inten- ) ) ) )

sity, opposite to that of the additive case. A linear stability The discrete Laplacian operator is defined as

analysis of the first and second moments of the relevant vari- 1

able of the system leads to analytical results that are in agree- (V2u), :_22 (up—u;), (2.6
ment with simulation$15,16]. Now we are interested in the (AX)**R

influence of the correlation length of the noiéshich in .
some other problems is known to reduce the effective valu&here the sum extgnds over_the_set. of ne.arest ngghbors of
of the noise intensity18,19). The mathematical treatment site 1. Now _dyna_mlcal e_volutlon IS dlscretlzeq in tineet

of the Fokker-Planck equation to study spatially extended*! P€ the time integration st¢mand an algorithm Lcan be
systems with multiplicative colored noise is also presented.d€veloped from standard techniqyes)]. Up to O(At 9, it

This paper is organized as follows. Section Il presents th&6ads
results obtained by numerical simulation of the model. A _
: e : . Ui(t+At)=u;(t) + f;(u(t))At+g;; (U)X, +;
linear stability analysis of the structure function of the sys- '( )=+ HUO)AL g UEDX;+Yi
tem is made in Sec. lll, where a comparison with the previ- 1 9g;; 1 9g;;
ous numerical results shows good agreement. Section IV +§a_ukgklxjxl+§é,_ukijky 2.7

contains a generalization of the linear stability analysis treat-

ment to higher-order statistical moments. Finally some conwhereY; is a Gaussian distributed random number with zero
clusions are stated. An Appendix contains some details omean and variance Rte/Ax® to be placed at sitg.

the Fokker-Planck approach to the problem. Xj=+2AtZ;, where Z; is a random field correlated in
space, whose generation procedure will be described later.
Il. NUMERICAL ANALYSIS According to(2.5), the algorithm becomes in our particular
OF THE FULL NONLINEAR MODEL case

The nonequilibrium, nonlinear stochastic problem pre- 1 )
sented in Sec. | does not admit an exact analytical study. Ui(t+A1)=Ui() + i UEDAt+HUOXi+ Sui(DXT+Y,
Hence our first approach to the problem is a numerical one,
and constitutes the best way of obtaining a first insight into
the effects of external fluctuations in the pattern-forming in-
stability developed by the SH model.

The behavior of the model in the absence of multiplica-(now repeated indices armt summed ujp The last term in
tive noise is well known. Whea is small, the homogeneous this expression can be replaced by its statistical average
stateu=0 is stable for a negative value of the external con-(which is zero herg since it is known that in this case the
trol parameter. Forr=0, a bifurcation takes place from this resulting algorithm represents a stochastic process having the
homogeneous situation to an inhomogeneous state compossaime statistical properti¢21]. Hence the algorithm that we
of stripes. The influence of an uncorrelated fluctuating conuse is finally
trol parameter in this nonequilibrium spatially extended tran- 1
sition was preliminarly analyzed in Ref15], revealing a _ 2
nontrivial oEdering eff}:ect. H}:ere we extend the nurr?erical Ui (T AD =0+ HU)ALF WO X+ U (XY
analysis to a colored case. (2.9

1
35XV (2.8

) The space-correlated random fiefd will be generated
A. Algorithm from the following relation:
We begin by discretizing space in a regular two-
dimensional square lattice withx L cells of sizeAx. Now Z()Z)=exp(2i)\2V2
a

the SH model can be written in the following general form: W), (2.19

which is written in continuum spaceW(i) is a Gaussian

(9Ui
St - i+ gy (WM +m(), @D White random field of intensity:
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FIG. 1. Steady convective flux vs control parametein the FIG. 2. Relative fluctuations of the steady convective heat flux
absence of external noiseircles, with a white multiplicative noise 5 control parameter. Values of the parameters are the same as
of intensity D=0.1 (squarep and with a multiplicative noise of hose in Fig. 1.

intensity D=0.1 and correlation lengtih=0.71 (triangles and

starg. System size is 4040 except for the stars, which correspond formed on small finite systems, produces a rounding off of

10 30x30. the otherwise sharp transition described above. Periodic
R . . boundary conditions are considered, akg=1 is chosen.
(WX)W(X"))=D&(x=x"). (211  Given this lattice spacing, a value At=0.01 happens to be

T4

R enough to ensure stability of the algorithm. The intensity of
Z(x) can be generated easily in Fourier space, whiéree-  the additive noise is taken to be equal to #0n all cases.
comes an anticorrelated fie[@2]. Definition (2.10 is cho-  On the other hand, the value of the wave numigis cho-
sen in such a way that random fiefdx) [and hence multi- sen in each case so that each convective roll is described by
plicative noises(x,t)] have a well-defined correlation length ten lattice cells. o
\, as can be seen by computing the space correlation func- N the presence of a nonzero external multiplicative un-
tion D[()Z—)?’)/)\], which can be done in a straightforward corrglated £=0) noise the bifurcation is shifted to the con-
way by writing (2.10 in Fourier space. The result is ducting (r_<0) region, Wh'Ch. !eads to the appearance of roll
patterns in otherwise subcritical regiotsjuares in Fig. 11
N = 22 The amount of the shift is decreased back by the introduction
X—X D T |X—X| ; . )
D(— —29XP< ) (2.12 of space correlationN#0) in the external fluctuations, as
A 4\ shown by the empty-triangle curve in Fig. 1. In this last case
the simulation is also performed for a smaller value of the
B. Analysis of the transition system size, but no finite-size effects are encountéstbr-
In order to analyze the pattern-forming bifurcation exhib—'Sklsnlgrfgﬁ)ssrges?gg?; of equilibrium phase transitions, the
gignz%/y.model(z.l)—(z.@, we shall define the following bifurcatio_n shift found ab_ove can als_o be observed from the
' computation of the relative fluctuations of the steady heat
.. flux, which are expected to exhibit some sort of singular
J(t)=<f UZ(X,t)dX>, (2.13  behavior in the transition point. Indeed, if one computes the
relative fluctuations ol as
where the statistical average is made over realizations of ) )
both the internal and external noises. In the RayleighaBe =V<J )—(J) (2.14
case, the density of this quantity(t) =J(t)/V] corresponds X ()2 ’
to the density of heat flux due to convection from the lower
towards the upper plate of the cell. Hence its value is zero ithen the transition point is characterized by a maximum
the homogeneous stateo convective rollsand nonzero in  value of this quantity. This is observed in Fig. 2, where the
the structured convective phase, increasing linearly with théransition shifts, which were already present in Fig. 1, are
control parameter, as shown clearly by experiments. This clearly observed. Again no finite-size effects are found. On
behavior is recovered by numerical simulations of the modelthe other hand, unfortunately the analysis of neitheor its
In the absence of external noise, stripes appear for values oflative fluctuationsy gives a hint on the effect of multipli-
r greater tham=0, as discussed earlier. This can be seen irtative noise on the nature of the bifurcati@e., on the order
Fig. 1, where the steady-state value of the heat flux is plottedf the transition. Further analytical work would be needed
against the control parameter of the system. It should bé order to clarify this point.
noted that the existence of a small but nonzero internal ad- In conclusion, simulations show that stripe patterns can be
ditive noise, along with the fact that simulations are per-favored by multiplicative noise, this effect being diminished
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FIG. 3. Patterns corresponding to the three situations named
A, B, andC in Fig. 1.

by correlation of the noise. Figure 3 shows three different Hence, the structure function indicates any periodicity in
situations corresponding to the states marked A, B, and C ithe system, so that it is a good way of characterizing a pat-
Fig. 1. Cases B and C are patterns far0 and hencda-  tern. Let us consider a finite system of voluiie The Fou-

voredby multiplicative noise. rier transformu,,(t) of the fieldu(x,t) is defined by

C. Structure function in the convecting phase u()z,t)= 12 eikﬂ'xuﬂ, 2.16
In order to analyze more deeply the lack of finite-size Vo
effects in the convective heat flux above threshold, we have
computed the stationary spherically averag&dcture func-
tion in a noise-favored convecting stateith a negativer
but a supercritical value dD). This function is defined as
the Fourier transform of the correlation function of the sys-
tem,

where the components & have the form Zru/L, where

wm is an integer and. is the corresponding linear dimension
of the system. Then it can be seen that the structure function
is

- 1 - - - -
G(x,t)= vadx%u(x’,t)u(x' +X,t)>. (2.15 Sﬂ:\%(u#uiﬁ»_ (2.17
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10.0 : . : function in the thermodynamic limiwhere the rolls are per-
fectly shapetlas the system size increases.
O 30x30
L O 40x40 ,
>0 ,A\ < 60x60 Ill. LINEAR STABILITY ANALYSIS
" \,\ A 120 x 120 OF THE STRUCTURE FUNCTION
—_ 80 j | A linear stability analysis of the homogeneous 0 so-
% ,’ \‘ lution of model(1.3) permits one to estimate the transition
40 L P 1 point as that at which this solution becomes unstable. Be-
t[@ll yond it the system departs from zero and becomes saturated
B by the nonlinearity, giving rise to the appearance of a non-
20 f e | T 1 zero roll solution. Due to the relevant role of the structure
/ | \A\\ function as a means of characterizing a patterned state, as has
oo B A A P B N A e A 5 t)heen d_|scussed in the previous section, we ;hall begm_ our
03 04 05 06 07 08 1009 eoretical approach to the problem with a linear stability

analysis of this function.

We now assume that the homogeneous conduatia@
solution is affected by small perturbations, so that we only
need to evaluate the evolution equationR)f, defined in

. . . . : 2.17 in the linear regime. This can be done by using the
Simulations show that this function behaves in the sam okker-Planck equation governing the behavior in time of

way_for the whole paramgter_ range, presentmg a uniqug, o probability density of the fieldin this case in Fourier
maximum related to the periodicity of the pattern in the Con'space. As shown in the Appendix, the Fokker-Planck equa-

vecting phase and to thermal fluctuations in the conducting, P .
one, even though in this last case the height of the peak ?|on for the probability distribution of the stochastic process

several orders of magnitude lower than in the convecting AONS
one. Calculations have been performed for different system

izes in th tterned region, where th ks are all n @ dJ Jd d
sizes e patte ed_ego, ere the peaks are all see LP:—E—F PrveY S
be centered at approximately the same valuk,d~k, (in ot = ou, * Ju. Jdu_

. . . . . M K 4 I I
this caseky=0.63), but their heights increase and their
widths decrease with increasihg(see Fig. 4. In fact, it can .
be seer(Fig. 5) thatS,,,~L andAS~L 1, so that the total J

. . . + S, - ! [ r .

area under the curv8(k) is kept constant with varying. V% EV ; &u#G‘“V D auVG”” P, GD
This result agrees with the lack of finite-size effectslip
since the convective heat flux can be seen to be equal to the : . .
area under the structure function. All these facts lead to thgvhereDV Is the discrete Fourier transform Bf_; , andF

conclusion that the structure function approaches a deltﬁndG are the_ Fourier 'gransforms of the corresponding terms
PP in the discretized version of the SH equatidn3):

FIG. 4. Structure function for the same convecting state with
different system sizes.

P

25 - T T T

du . N
20| - S LA+ RO+ g E0ED, (2
§1.5 - 4
E ol . © so that
051 ] fi=[r—(V3+k3)2Ju;—F,=[r—(V2+k3)]u,,,
0.0 : : :

gi:ui(_)G,u:u;u (33)

n whereV;; andV , are a discretized version of the Laplacian
d 2r 1 and its Fourier transform, respectively. The time evolution
- equation forS,, is given by

-4 t 1 | d SM 1 07P
3.0 35 40 45 5.0 Duu,u_, i (3.4

InL daro v

FIG. 5. Logarithmic plots of the maximum and width of the ~ When the Fokker-Planck equati@8.1) is introduced in
structure function against system size. Linear fitting gives expothis expression and integration by parts is performed, the
nents~+1 and~ — 1, respectively. following equation is obtained:
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ds 0.6
Vd—t“=<uMF,M)+<u,MFM> _
A=0.5
1 2 05 +
Ty DU 8.y0-0Cy DGy P
K conduction
1 oG, _ 0.4
+ — " YD, ,
vf Dun%, Suntl-n gy Dw G P I
1 0.3+ A=0.71
+vf DU X 8 4y3uGy- DGy P I .
nv,v
0.2 _
1 aanv’ ‘ A=1.0
Ty DU S su DvGuiP i A
" 0.1 .
+2eV. (3.9 L 4 convection
Introduction of(3.3) into this expression leads to 0. e ol T 55

D
%Sﬂ(t)=2[r—(Vi+ k3)21S,.(t) +2¢ + ésME D,
v FIG. 6. Phase diagram of the system in tii, {r) plane for
2 different values of the correlation length of the noise.
+ VTE DV<U#,VU,#+V>. (36) . N 2 . .

v state. Besided) (0)=D/(4\°) for the particular noise spec-
trum we have chosen, so that the amount of the shift de-
creases with increasing correlation length. This effect can be
observed in the simulation results presented in Fig. 6, where
a phase diagram of the system is plotted in the-{r) plane
E D,,=VD(>Z= 0)=VD(0). (3.7 for different values of the correlation length of the noisdt

v is worth noting that, as long a3+ 0, the critical value of
r for the transition from conduction to convection is strictly
negative. As predicted by our analysis, the critical curve in
d this plane is a straight line whose slope decreases #s
—S ()=2[r+D(0)— (V2 +k3)2]S, (1) +2¢ creases, reducing the noise-favored region and thus the shift
dt ™* " " effect due to the multiplicative noise. In the figure, isolated
1 symbols are transition points as obtained from simulations,
+2->'D,S,_,. (3.899  Wwhereas solid lines are the corresponding relations coming
\a * from the linear analysifr + D/(4\2)=0].

. ) o . . In the linear stability analysis of Rdf16], the last term of
Translation of this equation into its continuum version IeadsEq. (3.9 was considered and was proved to give corrections
to the final expression for the evolution equation of the struc orderD(0)2. On the other hand, the relevance of this term
ture function of the Swift-Hohenberg model in the presencean pe seen by studying the stationary structure function.

But, according to definition2.16), the following relation
holds:

Thus the equation for the structure function is finally

of a space-colored multiplicative external noise: From evolution equationi3.9), this function can be analyti-
p cally found in the subcritical caser ¢ D/Ax?><0) for a
ﬁS(R,t)zz[rJr D(0)— (k?>— k(z))z]S(IZ,t)—l—Zg white external nois¢D (k) =D], the result being
g’ g’
PN D(q)S(k—q,t)dq 3.9 Ss(K) =772 = : (3.10
(2m?) ~VCADE - (kG2 renl (k)

The stability analysis of this equation needs some comment¥/here the effective control parametey; is

The last term in Eq(3.9) is a mode-coupling term, which is

essentially nonlinear and will be discarded in our linear r =r+£ 3.11)
. . T . . eff 2 .

analysis. In this case, the presence of multiplicative noise Ax

leads to the existence of an effective noise-dependent control

parametery + D(0), sothat any perturbation of the homo- and the renormalized additive-noise intensity is

geneous state will always grow if the condition

r+D(0)>0 is obeyed. Hence, linear analysis predicts that, ol = € (3.12

under the presence of multiplicative noise, the system can 1-9D ’

leave the homogeneous state in situations for whietO.

The nonlinearity will then stabilize the system in an orderedwith
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FIG. 7. Simulation results for the spherically averaged structure FIG. 8. Comparison of the spherically averaged structure func-
function for a conducting state witkcircles and without (dia- tion obtained by simulatiofidiamonds, discrete integration of the
mondg multiplicative noise. Dashed lines are the continuum ana-analytical linear evolution equatiofdashed ling and linear ana-
lytical solutions coming from linear analysis, and the dotted linelytical continuum solutior(solid line).
corresponds to the solution with no mode-coupling tery set
equal to 0). Values of the parameters are —0.2, £¢=0.001, A. Zero-dimensional case

Ax=1.0, andko=0.63. Let us consider the following zero-dimensional model,

known as the Stratonovich model:

y=— i|r « ~Varctanr ﬁll’zz%f LdIZ. dx
47" ® e (2m)°) (k) (.13 a:ax—x3+x§(t),

o . o (E(DEL))=2D8(t—t).

This linear result can be compared satisfactorily with
(nonlineay numerical simulations, since in the subcritical re- In the absence of noise, this model exhibits a supercritical
gion nonlinear terms are expected to be negligible. Figure ‘pitchfork bifurcation ata=0. For negative values af, the
shows both kinds of results with and without multiplicative staple stationary solution @#.1) is x=0. In the presence of
noise. The ordering role of this external noise is observedhe multiplicative noise, the position of the bifurcation point
even in this conducting situation, enhancing the maximuntan be given by a linear stability analysis of solutios 0.
value of the structure function &=ko. The growing dis-  Sincex is now a stochastic process, the stability analysis is
crepancy between theory and simulation at large wave nunerformed on its statistical moments, whose time evolution
bers can be understood from the fact that we are comparingan be found from the Fokker-Planck equation governing the
an analytical result derived in a continuum space with nueyolution ofP. In the linear regime we have
merical results coming from a discrete-space simulation. Fig-

4.9

ure 8 shows a comparisdfor the caséD =0) between these JP d Jd 0

two results and adiscret¢ numerical integration of Eq. Tt o XPTD o x—=x%P, (4.2

(3.9. The agreement between these results and the simula-

tion ones is quite good even at large wave numbers. whereP(x,t) is the probability density of the stochastic pro-
It should be noted that making=0 in (3.10—(3.13  cessx(t). This equation leads to

amounts to ignoring the mode-coupling term in E8.9). J

Figure 7 shows that the resui8.10 with y=0 is almost

identical to the solution of the full linear analysis, in agree- i X" =n(a+nD)(x"), (4.3

ment with our previous statement concerning the lack of in-
fluence of the mode-coupling term in a first-order linear stawhich indicates that the bifurcation point for tmh-order
bility analysis. moment is located a&.= —nD. Hence the position of the
bifurcation point depends on the order of the statistical mo-
ment that is being analyzed, which makes this analysis
IV. LINEAR STABILITY ANALYSIS meaningless. We will see shortly that spatial coupling in ex-
OF nTH-ORDER MOMENTS tended systems introduces changes to this situation, leading

. N to a useful analytical result.
Due to the stochastic character of the fiel(k,t), the Y

linear stability analysis can also be done on the statistical
moments ofu. In this case, differences between the zero-
dimensional and the spatially extended cases appear, as will We now turn our attention back to the SH model with
be discussed in what follows. multiplicative noise (1.3). In order to obtain a possible

B. Spatially extended case
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higher-order generalization of the structure function, let usexpect that for large values of the intensity of this noise, the

consider the following correlation function: system will return to the disordered state.
1 n
GM(x,t)= vj d)?’< IT ux’+a —1))Z,t)> . (4.9 ACKNOWLEDGMENTS
v =1

This research was supported in part by the Direc&en-

which measures the correlation between the values of theral de Investigacio Cientfica y Tecnica (Spairn under

field atn points equally spaced along a line. Its Fourier trans-Project No. PB93-0769. Most of the simulations were per-
form leads to a generalizetth-order structure function, formed on the CRAY Y-MP of the Centre de Supercom-

putacio de Catalunya(CESCA). Fruitful discussions with
Professor L. Kramer and J. Casademunt are acknowledged.

1 . " "
S(Mn):vz E z <|1_[1 uMi>5Z ,%0514”2 (i—1)u;,0

M1 M2 Mn

(4.5) APPENDIX: FOKKER-PLANCK EQUATION
FOR A SPATIALLY EXTENDED PROCESS
Applying to this quantity the procedure described in the WITH MULTIPLICATIVE NOISE

previous paragraphs, making use of the Fokker-Planck equa-
tion (3.1, performing integration by parts, and ignoring in-
ternal noise, one finds

In the following we shall assume a multiplicative noise
with a non+d correlation only in space:

d (E(X,DEX"1))=2D(x—x")8(t—t"). (A1)
asﬁ;‘>(t)=n[r+D(O)—(Vfﬁ k5)21S, (1)
Our aim now is to find the Fokker-Planck equation gov-

n(n—1 ; ; AT
. ( )2 DM 4.6 erning the stoc;hasnc process whose evolution is given by the
\% o Ve general equation
Unlike the zero-dimensional case, all dependence ofithe au(x,t)

linear coefficient in the previous equation is factorized out. =f(u(x,1),V)+g(u(x,t),V)é(x,t). (A2)
Hence, this result shows that spatial coupling prevents the

linear analysis from giving different first-order results for
different-order statistical momenigpart of the contribution
of the multiplicative noise comes through the inhomoge-
neous term in Eq(4.6), which represents the coupling be-
tween spatial mod¢sThere exist, of course, other possible du
methods to study and extract information from the behavior haha Y _ :

of higher-order moments in pattern-forming systesese, for dt fiu®)+aiu®)& (), (A3)
instance[23]).

ot

This can be easily done in Fourier space. In a first step the
equation is written in a discrete space, where the Langevin
equation is

where the cells have been named with one index indepen-
V. CONCLUSION dently of the dimension of the discrete space. The correlation

] ) . . of the noise in this discrete space is
Simulations of the Swift-Hohenberg model with a space-

correlated fluctuating control parameter show that the bifur- (E(DE&))=2D;_8(t—t") (A4)
cation point from a homogeneous to a structured state is el E ’

shifted from the standard additive-noise case. The amount ofh D. . is the di t . fth i functi
the shift increases with increasing intensity of the muItipIi-W ereb;—; 1S the discrete version ot the continuous function

cative noise, whereas space correlation in the fluctuation, d€Scribing the space decay of the correlation. In the limit

- P : . . of zero correlation lengthiwhite-noise limi} it becomes
shifts back the transition point towards the standard situation® : . L
P dij /(Ax)9, whereAx is the spacing of the lattice, i.e., the

A good qualitative and quantitative agreement is obtained \

between this numerical study and a linear stability analysi§eII SIZ€. , . . .
of the structure function of the system, for the values of the Now we define the discrete Fourier transform and anti-
parameters used here. The stability analysis has also begﬁnsform as
performed on a set of generalized structure functions that
correspond to higher-order statistical moments, and the same u,=(Ax)9S e idwiy,
results are found in all casése., for all order$ within our © 7 b
assumptionsi.e., at first ordex, which constitutes a qualita-

tive difference to the role of multiplicative noise in zero- 1
dimensional systems. ui:T:TE eiquxiuu, (A5)
In conclusion, in this pattern-forming spatially extended (LAX)™

system, multiplicative noise produces an unambiguous shift

of the transition in the ordering direction. It is worth saying, where L is the number of cells per dimension,
however, that according to recent studies on other extendeg), = (27/LAX)u, X;=iAx and the sums are-fold going
systems in the presence of multiplicative ndi$&], one can from 1 toL. It can be seen that the following relations hold:
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2 e wN=19g, 0, (p(UDE, (D)= fodt'zn <§V<t>f,,<t'>><a§—ft,)>
’ (A12)
2 utiy=Ld; . (A6)  and using(0.7) one finds
y23
'Srgeenc&rrs(laation of the noise in Fourier spagg(t), can be (p(u,t)gy(t)):(LAx)dDy<%>_ (A13

<§M(t)§y(t’))=(LAx)d 2D,5_,,8(t—t'). (A7) And this last average can be calculated in the following way:

Here definitiong0.5) and properties0.6) have been used. ap
The equation of evolution afi, comes from the Fourier

B ou,(t)y a 3
-2 <5§_V<t> au,m 2 “)>

transformation of Eq(0.3): g - (1)) 3
== i< ool 5(u(t)—u)>
%=fM+(Ax)d2 e uXig &, . (A8) 70Uy \ 66_ (1) W=

(A14)

The last term at the right-hand side can be evaluated in ter

of the Fourier variables by means @.5) and (0.6): MPhe functional derivative in this expression can be calculated

from Eq.(0.9). The result is

duﬂ_ 1 Su,(t)
W—f’u‘i‘mzy gufvgv- (Ag) 7

55711(1:) = (LAX)d g77+ V(u(t))

In the phase space of these Fourier variables we consider &g that the Fokker-Planck equation we are looking for is
ensemble of systems corresponding to a given realization gy

the noise and different initial conditions. The density of this
ensemblep(u,t) must verify a continuity Liouville equation

(A15)

o"P_ d

T3 “tp
M
o s . o at 70U,
ot < au, P (A10) 1 9 9
+m2 EV > WngDvﬁgan-
where p(u,t)=(8(u(t)—u)),c, the average being taken K K K
over initial conditions only. On the other hand, the average (Alo6)

of this density over the noise is the probability density of the
stochastic proce€(u,t) =(p) (Van Kampen's lemm#§24])
whose evolution equation is the Fokker-Planck equation we

In the particular case of a noise that is also white in space,

dio

are looking for. Performing this noise average(6ri0 thus DizsszM;S (A17)
leads to
and the Fokker-Planck equation is
JP J 1 J
a2, P ey 2, G ) PoS Tip
(A11) at - 4 ou, *

The average in the last term of the second member of this € J J
equation can be evaluated by meansNaivikov’'s theorem + WE E 2 Wgﬂ—vﬁgnwp-
[25], which states that for a Gaussian stochastic pro&¢ise peovom e 7
following relation holds: (A18)
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